## New Papaveraceae Alkaloids Including an 7,8-Oxygenated Isoquinoline, the Postulated Precursor of the Cularine Alkaloids

G. Blaschke\* and G. Scriba

Institut für Pharmazeutische Chemie der Universität, Hittorfstraße 58–62, D-4400 Münster, FRG

Z. Naturforsch. **38 c**, 670 – 671 (1983); received May 14, 1983

Papaveraceae, Cularines, Benzylisoquinolines

The first 7,8,3',4'-oxygenated benzylisoquinoline, the probable precursor of the cularine alkaloids, has been isolated together with 2 new cularines and 10 other alkaloids from *Corydalis claviculata*.

Cularine alkaloids occur only in the Fumariaceae family [1]. The "classical" cularines are oxygenated at  $C_7$ ,  $C_{3'}$  and  $C_{4'}$ . Recently two cancentrine-type alkaloids with oxygen functions at  $C_7$ ,  $C_{4'}$  and  $C_{5'}$  have been described [2]. The biogenesis of both types can be explained by direct oxydative coupling of the 7,8,3',4'-substituted benzylisoquinoline (1) [3, 4], an isomer of reticuline.

In the course of biogenetic studies we isolated this base 1, together with 2, a cancentrine-type cularine, and O-methylcularicine (3) from *Corydalis claviculata* DC. (Fumariaceae). Additionally to these three new compounds, cularine, cularidine, cularicine, stylopine and protopine, already described by Manske [5], as well as (+)-reticuline, (-)-scoulerine, (-)-cheilanthifoline, (+)-thaliporphine and cularimine were isolated.

Base 1 was obtained as an oil ( $\lambda_{\text{max}}$  280 nm), [ $\alpha$ ]<sub>D</sub> = +37.6° (c = 0.1; EtOH). Addition of NaOH caused a bathochromic shift of the UV-spectrum,

indicating the presence of phenolic hydroxyl groups; acetylation established two. The mass spectrum exhibited a benzylisoquinoline alkaloid. The base peak m/e = 192 (100%;  $C_{11}H_{14}NO_2$ , c.192.1024; f.192.1014) is due to the isoquinoline part with one hydroxyl and one methoxy group. The peak m/e = 137 (8%;  $C_8H_9O_2$ , c.137.0602; f.137.0601) represents the benzyl moiety substituted in the same manner. This corresponds to a molecular formula C<sub>19</sub>H<sub>23</sub>NO<sub>4</sub>. The <sup>1</sup>H-NMR spectrum (300 MHz, CDCl<sub>3</sub>) showed one NCH<sub>3</sub> ( $\delta = 2.37$ ) and two OCH<sub>3</sub> functions ( $\delta = 3.85, 3.89$ ). Six aliphatic protons appear as a multiplet ( $\delta = 2.44 - 3.39$ ). The pair of doublets ( $\delta = 4.12$ ; J = 3.7 Hz/9.1 Hz) is due to the proton at  $C_1$ . The signals at  $\delta = 6.75$ , 6.78 and 6.92 represent the ABX-spin system of the 3',4'-oxygenated benzyl part. The AB system ( $\delta = 6.61$  and 6.73; J = 8.3 Hz) reveals the 7.8-substitution pattern of the isoquinoline. The positions of the methoxy groups were determined by NOE experiments. Enhancement of the signals corresponding to  $H_6 (\delta = 6.73)$  and  $H_{5'} (\delta = 6.75)$  assign positions 7 and 4' to the OCH<sub>3</sub> functions, placing the hydroxyl groups in 8 and 3'. These data are in agreement with the spectra of synthetic racemate 1 [4, 6]. This is the first 7,8,3',4'-oxygenated benzylisoquinoline isolated from a natural source.

Base **2** crystallized from methanol as colourless needles, mp. 118 °C,  $[\alpha]_D = +268$ ° (c = 0.1; EtOH),  $C_{19}H_{21}NO_4$  (M<sup>+</sup>, 100%; c.327.1470; f.327.1470). The structure was established by MS and NMR including NOE experiments as the cularine **2** and was confirmed by spectral comparison with synthetic racemate **2** [4]. This is the first cularine with the substitution pattern at  $C_7$ ,  $C_{4'}$  and  $C_{5'}$  isolated from a Corydalis species.

CH<sub>3</sub>O O CH<sub>3</sub>

Reprint requests to Prof. Dr. G. Blaschke. 0341-0382/83/0700-0670 \$ 01.30/0



Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Notizen 671

O-methylcularicine (3),  $[\alpha]_D = +283^\circ$  (c = 0.1; EtOH), was analyzed for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub> (M<sup>+</sup>, 100%; c.325.1314; f.325.1320). The structure 3 proposed by the spectral data was confirmed by direct comparison with 3 prepared by methylation of cularicine with diazomethane.

We are grateful to Dr. V. Wray for NOE mea-

Acknowledgement

surements and to Prof. T. Kametani for copies of IR and <sup>1</sup>H-NMR spectra.

- [1] M. Shamma, The Isoquinoline Alkaloids, Academic
- Press, New York 1972.
  M. J. Campello *et al.*, Tetrahedron Lett. **23**, 239 (1982). [3] M. H. Abu Zarga, G. A. Miana, and M. Shamma, Tetrahedron Lett. **22**, 541 (1981).

Note added in proof (July 12th, 1983): The alkaloids 1 and 2 had also been recently isolated from Sarcocapnos crassifolia: J. M. Boente et al., Tetrahedron Lett. 24, 2303 (1983).

- [4] T. Kametani, F. Fukumoto, and M. Fujihara, Chem. Commun. 1971, 352. Bioorg. Chem. 1, 40 (1971).
- [5] R. H. F. Manske, Can. J. Chem. 18B, 97 (1940); ibid. 43, 989 (1965).
- [6] A. H. Jackson et al., J. Chem. Soc. Perkin Trans. I, 1974, 1911.